The Globe as a Network Geography and the Origins of the World Income Distribution

Matt Delventhal

Claremont McKenna College

UC Irvine October 17th, 2019

What determines population, GDP of a location?

One answer: history of connections to other locations

- trade flows
- technology flows
- population growth

long-run global transport network \approx natural infrastructure

- mountains, rivers, oceans
- $\bullet\,$ water/land transport cost changes $\rightarrow\,$ changes in network

Question: How important is natural topography for

- growth patterns over last 1000 years?
- income per capita differences today?

Overview

Quantitative dynamic spatial model

- the globe: 17,000 discrete locations
- two sectors: Ancient and Modern
- inputs: transport network + local fundamentals

(e.g. agricultural potential)

• **outputs**: population growth + innovation + diffusion

Simulate global development

- $(-\infty \ , \ 1000 \ {\rm CE}]$: Malthusian steady state
- (1000 CE , 2000 CE]:
 - declining transport costs
 - endogenous growth takeoff

Roadmap for today (work in progress)

- 1. updated model
- 2. calibration to year 1000

3. some simple counterfactuals

4. an old version of full simulation

Related lit

- Dynamic spatial models of development
 - Desmet, Nagy & Rossi-Hansberg (2018, JPE), Nagy (2017)
- ullet Natural topography ightarrow development
 - Gallup, Sachs & Mellinger (1999), Henderson, Squires, Storeygard & Weil (2018, QJE)
- Transport infrastructure/trade \rightarrow development
 - Donaldson & Hornbeck (2016, QJE), Redding & Venables (2004, JIE)
- Endogenous income & population growth
 - ► Galor & Weil (2000, AER), Hansen & Prescott (2002, AER)

Desirable model characteristics

• rich enough to capture spatial interactions

transparent

• few free parameters

• easily computable for thousands of locations

Model

n locations in the set $N \equiv \{1,2,...,n\}$

Two sectors: Ancient and Modern

Exogenous:

- $\boldsymbol{\gamma}_{ij} \in [0,1]$, bilateral transport costs
- λ_i , available land used in production, innovation
- α_i , Ancient TFP
- ω_i , Modern TFP

Endogenous:

- $m_i(t)$, idea stocks
 - boosts productivity of Modern sector
 - determined by innovation, diffusion
- $a_i(t)$, idea stocks, Ancient sector
 - determined by innovation, diffusion
 - slow growth, compared to Modern sector

• $x_i(t)$, people

- produce things, invent ideas
- determined by fertility

2,249 3° × 3° quadrangles (≈300km × 300km)
 now: 17,300 1° × 1° quadrangles

Consumers

• live one 25-year period, don't care about next generation

• real income:
$$y_i(t) = \omega_i \left(\int_0^A c_{i,l}(t)^{\rho} dl + \int_A^1 c_{i,l}(t)^{\rho} dl \right)^{\frac{1}{\rho}}$$

- goods indexed $l \in [0, 1]$
- ▶ [0, A] Ancient goods
- ▶ (A,1] Modern goods
- ω_i "final goods sector" TFP

• fertility rate: increasing function of utility $u_i(t)$

Armington-style goods

Normalize
$$\sum_{i \in N} \lambda_i = 1.$$

Each little bit of land produces a unique ancient, modern good

In a location i:

- a mass $A\lambda_i$ of ancient varieties
- a mass $(1 A)\lambda_i$ of modern varieties

Why not Eaton-Kortum?

- Armington allows greater specialization across locations without explicity modeling additional sectors
- Because goods are an input to innovation, the two assumptions are not isomorphic

Firms

Ancient, good k in location i:

$$q_{i,k} = \alpha_i a_i(t) \hat{s}_{i,k} \left(b_{i,k}^{\eta} l_{i,k}^{1-\eta-\sigma} \left(\int_0^1 z_{i,k,l}^{\rho} dl \right)^{\frac{\sigma}{\rho}} \right)^{\frac{1}{2}}$$

Modern, good k in location i:

$$q_{i,k} = m_i(t)\hat{s}_{i,k} \left(b_{i,k}^{\eta} l_{i,k}^{1-\eta-\sigma} \left(\int_0^1 z_{i,k,l}^{\rho} dl \right)^{\frac{\sigma}{\rho}} \right)^{\frac{1}{2}}$$

- $b_{i,k}$: labor employed in production
- $l_{i,k}$: land employed in production
- $z_{i,k,l}$: good l employed in production
- $\hat{s}_{i,k}$: current innovaiton

Innovation

Current innovation, boosts current efficiency:

$$\hat{s}_{i,k} = s_{i,k} \left(b_{i,k,I}^{\eta} l_{i,k,I}^{1-\eta-\sigma} \left(\int_0^1 z_{i,k,l,I}^{\rho} dl \right)^{\frac{\sigma}{\rho}} \right)^{\frac{1}{2}},$$

- $b_{i,k,I}$: labor employed in innovation
- $l_{i,k,I}$: land employed in innovation
- $z_{i,k,l,I}$: good l employed in innovation

New ideas generated as an externality.

Production equilibrium

- production \times innovation \rightarrow constant returns to scale
- equilibrium unit (average) cost of production P_i
- cost/competitive price of producing, sending good l from i to j:

$$p_{i,l} = rac{P_i}{\gamma_{ij}^\kappa lpha_i a_i}, ext{ ancient sector } p_{i,l} = rac{P_i}{\gamma_{ij} m_i}, ext{ modern sector }$$

"Market access" (aka, an inverse price index):

$$\begin{split} \mathbb{M}_{i} &\equiv \int_{0}^{1} \left(\frac{P_{i}}{p_{i,l}}\right)^{\frac{\rho}{1-\rho}} dl \\ &= A \sum_{j \in N} \lambda_{j} \left(\frac{P_{i}}{P_{j}} \gamma_{ji}^{\kappa} \alpha_{j} a_{j}\right)^{\frac{\rho}{1-\rho}} + (1-A) \sum_{j \in N} \lambda_{j} \left(\frac{P_{i}}{P_{j}} \gamma_{ji} m_{j}\right)^{\frac{\rho}{1-\rho}} \end{split}$$

Evolution of technology

Integrating over all firms' efforts, total ideas generated in location i:

$$\left[\frac{\sigma^{\frac{\sigma}{1-\sigma}}x_i^{\frac{\eta}{1-\sigma}}\lambda_i^{1-\frac{\eta}{1-\sigma}}\mathbb{M}_i^{\frac{1-\rho}{\rho}\frac{\sigma}{1-\sigma}}}{\lambda_i}\right]^{\phi} = \left[\sigma^{\frac{\sigma}{1-\sigma}}\left(\frac{x_i}{\lambda_i}\right)^{\frac{\eta}{1-\sigma}}\mathbb{M}_i^{\frac{1-\rho}{\rho}\frac{\sigma}{1-\sigma}}\right]^{\phi}$$

Modern sector idea stock law of motion:

$$m_i(t) = (1-\delta)m_i(t-1) + \left[\sigma^{\frac{\sigma}{1-\sigma}} \left(\frac{x_i(t-1)}{\lambda_i}\right)^{\frac{\eta}{1-\sigma}} \mathbf{M}_i(t-1)^{\frac{1-\rho}{\rho}\frac{\sigma}{1-\sigma}}\right]^{\phi}$$

 $\bullet \ \phi > 0 \text{, } \delta \in [0,1]$

- implicit diffusion: access to cheap traded goods increases innovation
- diminishing returns: if population doesn't grow, neither do ideas

Spillovers into ancient sector

$$a_i(t) = (1-\delta)a_i(t-1) + \left[\sigma^{\frac{\sigma}{1-\sigma}} \left(\frac{x_i(t-1)}{\lambda_i}\right)^{\frac{\eta}{1-\sigma}-\psi} \mathbb{M}_i(t-1)^{\frac{1-\rho}{\rho}\frac{\sigma}{1-\sigma}}\right]^{\phi}$$

• $\psi > 0 \implies$ slower growth rate than $m_i(t)$

Four simplifying assumptions

1. Ancient sector is non-tradable.

• $\kappa = \infty$

2. Long-run effect of market access on terms of trade (-) and technology level (+) balance out.

•
$$\phi = \frac{\rho - \sigma}{\sigma}$$

3. Long-run elasticity of Ancient component of market access to *own* population same as Modern.

•
$$\psi = \frac{\eta \rho}{(\rho - \sigma)(1 + \rho)}$$

4. For a given set of fundamentals, utility $u_i(t) \mbox{ does not grow in the long run.}$

•
$$\zeta = \eta \left[\frac{\rho}{\sigma(1-\rho)} - \frac{\sigma}{1-\sigma} \right] - 1$$

Balanced growth path utility

$$A_{i} \equiv \alpha_{i} \frac{A}{1-A}$$
$$\Omega_{i} \equiv \omega_{i}^{\rho} (1-A) (1-\sigma)^{\rho} \sigma^{\frac{\rho^{2}}{1-\rho}}$$
$$G_{ji} \equiv \gamma_{ij}^{\frac{\rho^{2}}{1-\rho^{2}}} \gamma_{ji}^{\frac{\rho}{1-\rho^{2}}}$$
$$b \equiv \frac{\eta}{\sigma} \frac{\rho^{2}}{1-\rho^{2}}$$

fertility increases in $u_i \implies$ utility equalization, $u_i = ar{u}$

Steady state/BGP

spillovers $\mathbf{\Omega}\mathbf{G}$	agriculture ${f A}$	$\overline{U}_0 \equiv U$ such that pop.	growth $= 0$
\cdot $n \times n$	$n \times 1$	•	0

Malthusian steady-state allocation: $\mathbf{x}, \bar{u} = \bar{U}_0$

BGP allocation: $\tilde{\mathbf{x}}, \bar{u} = \tilde{U}$

• \tilde{U} : largest eigenvalue of ΩG

• $\tilde{\mathbf{x}}$: eigenvector associated with $ar{U}$

Nec. and suff. condition: BGP $\iff \tilde{U} > \bar{U}_0$

 ${\scriptstyle \bullet}\,$ transport costs low enough \rightarrow spillovers strong enough

Year 1000 calibration

Transport costs:

- find least cost paths given rivers, oceans, ruggedness
- cost over land, water same as 14th C. England (Masschaele 1993)

Ancient sector TFP: interpreted as agriculture

• parameterized \leftarrow plausibly exogenous geological characteristics

Model parameters:

- 1. level of mean productivity of agriculture
- 2. level of mean productivity of modern sector
- 3. level of mean cost of distance
- 4. elasticity of substitution between goods

 \longrightarrow dispersion of population density, ceteris paribus

Agricultural, model params calibrated to explain year 1000 pop. density

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

- 1. Given N, calculate *lowest-cost paths* τ_{ij}^* for $\forall i, j \in N$.
- 2. Following Allen and Arkolakis (2014), set $\gamma_{ij} = \exp(-\tau_{ij}^*)$.

Topography data

Rivers

Data sources

Model inputs:

• Geology, climate:

- ▶ FAO Harmonized Soil Database 1.2, Fischer, et al (2008)
- USDA Natural Resources Conservation Center, World Soils Database (2005)
- NDVI: NASA LP DAAC (2016), Feb 2000 Jan 2016

• Topographical features:

- location of land, bodies of water \leftarrow Naturalearth database
- \blacktriangleright location and size classification of rivers $\ \leftarrow$ Naturalearth database
- Terrain Ruggedness Index \leftarrow Riley, DeGloria, and Elliot (1999)
- ▶ mean wave heights ← Barstow et al. (2009)

Model outputs:

- Population: HYDE 3.1 Database
 - ▶ Goldewijk, Beusen & Janssen (2010)
 - ▶ population in each $\frac{1}{12}^{\circ}$ by $\frac{1}{12}^{\circ}$ quadrangle, 10000 BCE 2000 CE

Population per sq. km, 1000 CE (Data)

Population per sq. km, 1000 CE (Model)

Population per sq. km, modern country boundaries

Calibrated model parameters

- ρ: 0.7187
- mean α_i: 0.6412
- mean (uniform) ω_i: 0.00027
- distance multiplier: 0.4144

Normalized:

- $ho^2 = \sigma$ (zero growth in Ancient sector ideas)
- $1 \eta \sigma = 0.2$ (land share = 20%)

Calibrated Ancient sector TFP

Wedges implied to match year 1000 population

Pop. per sq. km, 1000 CE (uniform geology/climate)

Pop. per sq. km, modern boundaries, unif. climate

Population per sq. km, 1000 CE (uniform geography)

Pop. per sq. km, modern boundaries, unif. geography

Quantitative exercise

currently being revised

- $-\infty
 ightarrow$ 1000 CE:
 - transport costs constant, Malthusian Steady State

1000 CE \rightarrow 2000 CE

- transport costs falling
- population, technology grows endogenously
- A_i : "agricultural potential"
 - taken from ecology literature (Ramankutty et al. 2012)

 Ω_i : same everywhere

Evolution of income per capita across the world

- Source: Maddison Database 2010
- Population data: HYDE 3.1 Database

Falling transport costs

- calculated from mean rate-of-change across available fragments of data
- initial transport costs: 14th century Britain, *Masschaele (1993)*
- same initial costs, same reductions, everywhere in the world

Population per sq. km, 1000 CE (Data)

Population per sq. km, 1000 CE (Model)

Results, 1000 CE

 $3^{\circ} \times 3^{\circ}$ grid squares: R²: .31 weighted corr: .57

regions: R²: .55 weighted corr: .88

Evolution of income dispersion

(world population, world income)

Predicted real income, 1000 CE

Predicted real income, 1500 CE

Predicted real income, 1750 CE

Predicted real income, 1800 CE

Predicted real income, 1850 CE

Predicted real income, 1900 CE

Predicted real income, 1950 CE

Predicted real income, 2000 CE

Income: Europe/World

Conclusion

- \bullet topography + agriculture accounts well for population and income in
 - ancient times
 - early modern era

• accounts less well for 20th-century developments

Thank you